6.5 An Application to Polynomials

The vector space of all polynomials of degree at most *n* is denoted \mathbf{P}_n , and it was established in Section 6.3 that \mathbf{P}_n has dimension n + 1; in fact, $\{1, x, x^2, ..., x^n\}$ is a basis. More generally, *any* n + 1 polynomials of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let $p_0(x)$, $p_1(x)$, $p_2(x)$, ..., $p_n(x)$ be polynomials in \mathbf{P}_n of degrees 0, 1, 2, ..., *n*, respectively. Then $\{p_0(x), \ldots, p_n(x)\}$ is a basis of \mathbf{P}_n .

An immediate consequence is that $\{1, (x-a), (x-a)^2, ..., (x-a)^n\}$ is a basis of \mathbf{P}_n for any number *a*. Hence we have the following:

Corollary 6.5.1

If *a* is any number, every polynomial f(x) of degree at most *n* has an expansion in powers of (x-a):

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n$$
(6.2)

If f(x) is evaluated at x = a, then equation (6.2) becomes

 $f(x) = a_0 + a_1(a-a) + \dots + a_n(a-a)^n = a_0$

Hence $a_0 = f(a)$, and equation (6.2) can be written f(x) = f(a) + (x-a)g(x), where g(x) is a polynomial of degree n-1 (this assumes that $n \ge 1$). If it happens that f(a) = 0, then it is clear that f(x) has the form f(x) = (x-a)g(x). Conversely, every such polynomial certainly satisfies f(a) = 0, and we obtain:

Corollary 6.5.2

Let f(x) be a polynomial of degree $n \ge 1$ and let *a* be any number. Then: **Remainder Theorem**

1. f(x) = f(a) + (x - a)g(x) for some polynomial g(x) of degree n - 1.

Factor Theorem

2. f(a) = 0 if and only if f(x) = (x - a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using "long division" to divide f(x) by (x-a)—see Appendix D.

All the coefficients in the expansion (6.2) of f(x) in powers of (x-a) can be determined in terms of the derivatives of f(x).⁶ These will be familiar to students of calculus. Let $f^{(n)}(x)$ denote the *n*th derivative

⁶The discussion of Taylor's theorem can be omitted with no loss of continuity.

of the polynomial f(x), and write $f^{(0)}(x) = f(x)$. Then, if

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

it is clear that $a_0 = f(a) = f^{(0)}(a)$. Differentiation gives

$$f^{(1)}(x) = a_1 + 2a_2(x-a) + 3a_3(x-a)^2 + \dots + na_n(x-a)^{n-1}$$

and substituting x = a yields $a_1 = f^{(1)}(a)$. This continues to give $a_2 = \frac{f^{(2)}(a)}{2!}$, $a_3 = \frac{f^{(3)}(a)}{3!}$, ..., $a_k = \frac{f^{(k)}(a)}{k!}$, where k! is defined as $k! = k(k-1)\cdots 2\cdot 1$. Hence we obtain the following:

Corollary 6.5.3: Taylor's Theorem

If f(x) is a polynomial of degree *n*, then

$$f(x) = f(a) + \frac{f^{(1)}(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Example 6.5.1

Expand $f(x) = 5x^3 + 10x + 2$ as a polynomial in powers of x - 1.

Solution. The derivatives are $f^{(1)}(x) = 15x^2 + 10$, $f^{(2)}(x) = 30x$, and $f^{(3)}(x) = 30$. Hence the Taylor expansion is

$$f(x) = f(1) + \frac{f^{(1)}(1)}{1!}(x-1) + \frac{f^{(2)}(1)}{2!}(x-1)^2 + \frac{f^{(3)}(1)}{3!}(x-1)^3$$

= 17 + 25(x-1) + 15(x-1)^2 + 5(x-1)^3

Taylor's theorem is useful in that it provides a formula for the coefficients in the expansion. It is dealt with in calculus texts and will not be pursued here.

Theorem 6.5.1 produces bases of \mathbf{P}_n consisting of polynomials of distinct degrees. A different criterion is involved in the next theorem.

Theorem 6.5.2

Let $f_0(x)$, $f_1(x)$, ..., $f_n(x)$ be nonzero polynomials in \mathbf{P}_n . Assume that numbers a_0, a_1, \ldots, a_n exist such that

$$f_i(a_i) \neq 0$$
 for each i
 $f_i(a_j) = 0$ if $i \neq j$

Then

1. $\{f_0(x), ..., f_n(x)\}$ is a basis of **P**_n.

2. If f(x) is any polynomial in P_n , its expansion as a linear combination of these basis vectors is

$$f(x) = \frac{f(a_0)}{f_0(a_0)} f_0(x) + \frac{f(a_1)}{f_1(a_1)} f_1(x) + \dots + \frac{f(a_n)}{f_n(a_n)} f_n(x)$$

Proof.

1. It suffices (by Theorem 6.4.4) to show that $\{f_0(x), \ldots, f_n(x)\}$ is linearly independent (because dim $\mathbf{P}_n = n+1$). Suppose that

$$r_0 f_0(x) + r_1 f_1(x) + \dots + r_n f_n(x) = 0, r_i \in \mathbb{R}$$

Because $f_i(a_0) = 0$ for all i > 0, taking $x = a_0$ gives $r_0 f_0(a_0) = 0$. But then $r_0 = 0$ because $f_0(a_0) \neq 0$. The proof that $r_i = 0$ for i > 0 is analogous.

2. By (1), $f(x) = r_0 f_0(x) + \cdots + r_n f_n(x)$ for *some* numbers r_i . Once again, evaluating at a_0 gives $f(a_0) = r_0 f_0(a_0)$, so $r_0 = f(a_0)/f_0(a_0)$. Similarly, $r_i = f(a_i)/f_i(a_i)$ for each *i*.

Example 6.5.2

Show that $\{x^2 - x, x^2 - 2x, x^2 - 3x + 2\}$ is a basis of **P**₂.

Solution. Write $f_0(x) = x^2 - x = x(x-1)$, $f_1(x) = x^2 - 2x = x(x-2)$, and $f_2(x) = x^2 - 3x + 2 = (x-1)(x-2)$. Then the conditions of Theorem 6.5.2 are satisfied with $a_0 = 2$, $a_1 = 1$, and $a_2 = 0$.

We investigate one natural choice of the polynomials $f_i(x)$ in Theorem 6.5.2. To illustrate, let a_0 , a_1 , and a_2 be distinct numbers and write

$$f_0(x) = \frac{(x-a_1)(x-a_2)}{(a_0-a_1)(a_0-a_2)} \quad f_1(x) = \frac{(x-a_0)(x-a_2)}{(a_1-a_0)(a_1-a_2)} \quad f_2(x) = \frac{(x-a_0)(x-a_1)}{(a_2-a_0)(a_2-a_1)}$$

Then $f_0(a_0) = f_1(a_1) = f_2(a_2) = 1$, and $f_i(a_j) = 0$ for $i \neq j$. Hence Theorem 6.5.2 applies, and because $f_i(a_i) = 1$ for each *i*, the formula for expanding any polynomial is simplified.

In fact, this can be generalized with no extra effort. If a_0, a_1, \ldots, a_n are distinct numbers, define the **Lagrange polynomials** $\delta_0(x), \delta_1(x), \ldots, \delta_n(x)$ relative to these numbers as follows:

$$\delta_k(x) = rac{\prod_{i \neq k} (x - a_i)}{\prod_{i \neq k} (a_k - a_i)}$$
 $k = 0, 1, 2, ..., n$

Here the numerator is the product of all the terms $(x - a_0)$, $(x - a_1)$, ..., $(x - a_n)$ with $(x - a_k)$ omitted, and a similar remark applies to the denominator. If n = 2, these are just the polynomials in the preceding paragraph. For another example, if n = 3, the polynomial $\delta_1(x)$ takes the form

$$\delta_1(x) = \frac{(x-a_0)(x-a_2)(x-a_3)}{(a_1-a_0)(a_1-a_2)(a_1-a_3)}$$

In the general case, it is clear that $\delta_i(a_i) = 1$ for each *i* and that $\delta_i(a_j) = 0$ if $i \neq j$. Hence Theorem 6.5.2 specializes as Theorem 6.5.3.

Theorem 6.5.3: Lagrange Interpolation Expansion

Let a_0, a_1, \ldots, a_n be distinct numbers. The corresponding set

$$\{\delta_0(x), \delta_1(x), \ldots, \delta_n(x)\}$$

of Lagrange polynomials is a basis of P_n , and any polynomial f(x) in P_n has the following unique expansion as a linear combination of these polynomials.

$$f(x) = f(a_0)\delta_0(x) + f(a_1)\delta_1(x) + \dots + f(a_n)\delta_n(x)$$

Example 6.5.3

Find the Lagrange interpolation expansion for $f(x) = x^2 - 2x + 1$ relative to $a_0 = -1$, $a_1 = 0$, and $a_2 = 1$.

Solution. The Lagrange polynomials are

$$\begin{split} \delta_0 &= \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{1}{2}(x^2 - x) \\ \delta_1 &= \frac{(x+1)(x-1)}{(0+1)(0-1)} = -(x^2 - 1) \\ \delta_2 &= \frac{(x+1)(x-0)}{(1+1)(1-0)} = \frac{1}{2}(x^2 + x) \end{split}$$

Because f(-1) = 4, f(0) = 1, and f(1) = 0, the expansion is

$$f(x) = 2(x^2 - x) - (x^2 - 1)$$

The Lagrange interpolation expansion gives an easy proof of the following important fact.

Theorem 6.5.4

Let f(x) be a polynomial in \mathbf{P}_n , and let a_0, a_1, \ldots, a_n denote distinct numbers. If $f(a_i) = 0$ for all *i*, then f(x) is the zero polynomial (that is, all coefficients are zero).

<u>Proof.</u> All the coefficients in the Lagrange expansion of f(x) are zero.

Exercises for 6.5

f(a) = g(a), show that f(x) - g(x) = (x - a)h(x) for sion of f(x) relative to $a_0 = 1$, $a_1 = 2$, and $a_2 = 3$ if: some polynomial h(x).

Exercises 6.5.2, 6.5.3, 6.5.4, and 6.5.5 require polynomial differentiation.

Exercise 6.5.2 Expand each of the following as a polynomial in powers of x - 1.

a. $f(x) = x^3 - 2x^2 + x - 1$ b. $f(x) = x^3 + x + 1$ c. $f(x) = x^4$ d. $f(x) = x^3 - 3x^2 + 3x$

Exercise 6.5.3 Prove Taylor's theorem for polynomials.

Exercise 6.5.4 Use Taylor's theorem to derive the binomial theorem:

$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$$

Here the **binomial coefficients** $\binom{n}{r}$ are defined by

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

where $n! = n(n-1) \cdots 2 \cdot 1$ if $n \ge 1$ and 0! = 1.

Exercise 6.5.5 Let f(x) be a polynomial of degree *n*. Show that, given any polynomial g(x) in \mathbf{P}_n , there exist numbers b_0, b_1, \ldots, b_n such that

$$g(x) = b_0 f(x) + b_1 f^{(1)}(x) + \dots + b_n f^{(n)}(x)$$

where $f^{(k)}(x)$ denotes the *k*th derivative of f(x).

Exercise 6.5.6 Use Theorem 6.5.2 to show that the following are bases of \mathbf{P}_2 .

a.
$$\{x^2 - 2x, x^2 + 2x, x^2 - 4\}$$

b. $\{x^2 - 3x + 2, x^2 - 4x + 3, x^2 - 5x + 6\}$

Exercise 6.5.1 If polynomials f(x) and g(x) satisfy **Exercise 6.5.7** Find the Lagrange interpolation expan-

a.
$$f(x) = x^2 + 1$$
 b. $f(x) = x^2 + x + 1$

Exercise 6.5.8 Let a_0, a_1, \ldots, a_n be distinct numbers. If f(x) and g(x) in \mathbf{P}_n satisfy $f(a_i) = g(a_i)$ for all *i*, show that f(x) = g(x). [*Hint*: See Theorem 6.5.4.]

Exercise 6.5.9 Let a_0, a_1, \ldots, a_n be distinct numbers. If $f(x) \in \mathbf{P}_{n+1}$ satisfies $f(a_i) = 0$ for each i = 0, 1, ..., n, show that $f(x) = r(x - a_0)(x - a_1) \cdots (x - a_n)$ for some r in \mathbb{R} . [*Hint*: *r* is the coefficient of x^{n+1} in f(x). Consider $f(x) - r(x - a_0) \cdots (x - a_n)$ and use Theorem 6.5.4.]

Exercise 6.5.10 Let *a* and *b* denote distinct numbers.

- a. Show that $\{(x-a), (x-b)\}$ is a basis of **P**₁.
- b. Show that $\{(x-a)^2, (x-a)(x-b), (x-b)^2\}$ is a basis of \mathbf{P}_2 .
- c. Show that $\{(x-a)^n, (x-a)^{n-1}(x-b), (x-a)^n, (x-a)$..., $(x-a)(x-b)^{n-1}$, $(x-b)^n$ is a basis of **P**_n. [Hint: If a linear combination vanishes, evaluate at x = a and x = b. Then reduce to the case n - 2by using the fact that if p(x)q(x) = 0 in **P**, then either p(x) = 0 or q(x) = 0.1

Exercise 6.5.11 Let *a* and *b* be two distinct numbers. Assume that $n \ge 2$ and let

$$U_n = \{f(x) \text{ in } \mathbf{P}_n \mid f(a) = 0 = f(b)\}.$$

a. Show that

$$U_n = \{(x-a)(x-b)p(x) \mid p(x) \text{ in } \mathbf{P}_{n-2}\}$$

b. Show that dim $U_n = n - 1$.

[*Hint*: If p(x)q(x) = 0 in **P**, then either p(x) = 0, or q(x) = 0.]

c. Show $\{(x-a)^{n-1}(x-b), (x-a)^{n-2}(x-b)^2, (x-a)^{n-2}(x-b)^$..., $(x-a)^2(x-b)^{n-2}$, $(x-a)(x-b)^{n-1}$ is a basis of U_n . [*Hint*: Exercise 6.5.10.]

6.6 An Application to Differential Equations

Call a function $f : \mathbb{R} \to \mathbb{R}$ differentiable if it can be differentiated as many times as we want. If f is a differentiable function, the *n*th derivative $f^{(n)}$ of f is the result of differentiating *n* times. Thus $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f^{(1)'}$, ... and, in general, $f^{(n+1)} = f^{(n)'}$ for each $n \ge 0$. For small values of *n* these are often written as f, f', f'', f''',

If a, b, and c are numbers, the differential equations

$$f'' + af' + bf = 0$$
 or $f''' + af'' + bf' + cf = 0$

are said to be of second-order and third-order, respectively. In general, an equation

$$f^{(n)} + a_{n-1}f^{(n-1)} + a_{n-2}f^{(n-2)} + \dots + a_2f^{(2)} + a_1f^{(1)} + a_0f^{(0)} = 0, \quad a_i \text{ in } \mathbb{R}$$
(6.3)

is called a **differential equation of order** n. In this section we investigate the set of solutions to (6.3) and, if n is 1 or 2, find explicit solutions. Of course an acquaintance with calculus is required.

Let f and g be solutions to (6.3). Then f + g is also a solution because $(f + g)^{(k)} = f^{(k)} + g^{(k)}$ for all k, and af is a solution for any a in \mathbb{R} because $(af)^{(k)} = af^{(k)}$. It follows that the set of solutions to (6.3) is a vector space, and we ask for the dimension of this space.

We have already dealt with the simplest case (see Theorem 3.5.1):

Theorem 6.6.1

The set of solutions of the first-order differential equation f' + af = 0 is a one-dimensional vector space and $\{e^{-ax}\}$ is a basis.

There is a far-reaching generalization of Theorem 6.6.1 that will be proved in Theorem 7.4.1.

Theorem 6.6.2

The set of solutions to the *n*th order equation (6.3) has dimension *n*.

Remark

Every differential equation of order n can be converted into a system of n linear first-order equations (see Exercises 3.5.6 and 3.5.7). In the case that the matrix of this system is diagonalizable, this approach provides a proof of Theorem 6.6.2. But if the matrix is not diagonalizable, Theorem 7.4.1 is required.

Theorem 6.6.1 suggests that we look for solutions to (6.3) of the form $e^{\lambda x}$ for some number λ . This is a good idea. If we write $f(x) = e^{\lambda x}$, it is easy to verify that $f^{(k)}(x) = \lambda^k e^{\lambda x}$ for each $k \ge 0$, so substituting f in (6.3) gives

 $(\lambda^n + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \dots + a_2\lambda^2 + a_1\lambda^1 + a_0)e^{\lambda x} = 0$

Since $e^{\lambda x} \neq 0$ for all *x*, this shows that $e^{\lambda x}$ is a solution of (6.3) if and only if λ is a root of the **characteristic** polynomial c(x), defined to be

$$c(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_{2}x^{2} + a_{1}x + a_{0}$$