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6.5 An Application to Polynomials

The vector space of all polynomials of degree at most n is denoted Pn, and it was established in Section 6.3
that Pn has dimension n+1; in fact, {1, x, x2, . . . , xn} is a basis. More generally, any n+1 polynomials
of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let p0(x), p1(x), p2(x), . . . , pn(x) be polynomials in Pn of degrees 0, 1, 2, . . . , n, respectively.
Then {p0(x), . . . , pn(x)} is a basis of Pn.

An immediate consequence is that {1, (x−a), (x−a)2, . . . , (x−a)n} is a basis of Pn for any number
a. Hence we have the following:

Corollary 6.5.1

If a is any number, every polynomial f (x) of degree at most n has an expansion in powers of
(x−a):

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n (6.2)

If f (x) is evaluated at x = a, then equation (6.2) becomes

f (x) = a0 +a1(a−a)+ · · ·+an(a−a)n = a0

Hence a0 = f (a), and equation (6.2) can be written f (x) = f (a)+(x−a)g(x), where g(x) is a polynomial
of degree n−1 (this assumes that n≥ 1). If it happens that f (a) = 0, then it is clear that f (x) has the form
f (x) = (x−a)g(x). Conversely, every such polynomial certainly satisfies f (a) = 0, and we obtain:

Corollary 6.5.2

Let f (x) be a polynomial of degree n≥ 1 and let a be any number. Then:
Remainder Theorem

1. f (x) = f (a)+(x−a)g(x) for some polynomial g(x) of degree n−1.

Factor Theorem

2. f (a) = 0 if and only if f (x) = (x−a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using “long division” to divide f (x) by (x− a)—see
Appendix D.

All the coefficients in the expansion (6.2) of f (x) in powers of (x−a) can be determined in terms of the
derivatives of f (x).6 These will be familiar to students of calculus. Let f (n)(x) denote the nth derivative

6The discussion of Taylor’s theorem can be omitted with no loss of continuity.
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of the polynomial f (x), and write f (0)(x) = f (x). Then, if

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n

it is clear that a0 = f (a) = f (0)(a). Differentiation gives

f (1)(x) = a1 +2a2(x−a)+3a3(x−a)2 + · · ·+nan(x−a)n−1

and substituting x = a yields a1 = f (1)(a). This continues to give a2 =
f (2)(a)

2! , a3 =
f (3)(a)

3! , . . . , ak =
f (k)(a)

k! ,
where k! is defined as k! = k(k−1) · · ·2 ·1. Hence we obtain the following:

Corollary 6.5.3: Taylor’s Theorem

If f (x) is a polynomial of degree n, then

f (x) = f (a)+
f (1)(a)

1! (x−a)+
f (2)(a)

2! (x−a)2 + · · ·+ f (n)(a)
n! (x−a)n

Example 6.5.1

Expand f (x) = 5x3 +10x+2 as a polynomial in powers of x−1.

Solution. The derivatives are f (1)(x) = 15x2 +10, f (2)(x) = 30x, and f (3)(x) = 30. Hence the
Taylor expansion is

f (x) = f (1)+ f (1)(1)
1! (x−1)+ f (2)(1)

2! (x−1)2 +
f (3)(1)

3! (x−1)3

= 17+25(x−1)+15(x−1)2+5(x−1)3

Taylor’s theorem is useful in that it provides a formula for the coefficients in the expansion. It is dealt
with in calculus texts and will not be pursued here.

Theorem 6.5.1 produces bases of Pn consisting of polynomials of distinct degrees. A different criterion
is involved in the next theorem.

Theorem 6.5.2

Let f0(x), f1(x), . . . , fn(x) be nonzero polynomials in Pn. Assume that numbers a0, a1, . . . , an

exist such that
fi(ai) 6= 0 for each i

fi(a j) = 0 if i 6= j

Then

1. { f0(x), . . . , fn(x)} is a basis of Pn.

2. If f (x) is any polynomial in Pn, its expansion as a linear combination of these basis vectors is

f (x) = f (a0)
f0(a0)

f0(x)+
f (a1)
f1(a1)

f1(x)+ · · ·+ f (an)
fn(an)

fn(x)
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Proof.

1. It suffices (by Theorem 6.4.4) to show that { f0(x), . . . , fn(x)} is linearly independent (because
dim Pn = n+1). Suppose that

r0 f0(x)+ r1 f1(x)+ · · ·+ rn fn(x) = 0, ri ∈ R

Because fi(a0)= 0 for all i> 0, taking x= a0 gives r0 f0(a0)= 0. But then r0 = 0 because f0(a0) 6= 0.
The proof that ri = 0 for i > 0 is analogous.

2. By (1), f (x) = r0 f0(x) + · · ·+ rn fn(x) for some numbers ri. Once again, evaluating at a0 gives
f (a0) = r0 f0(a0), so r0 = f (a0)/ f0(a0). Similarly, ri = f (ai)/ fi(ai) for each i.

Example 6.5.2

Show that {x2− x, x2−2x, x2−3x+2} is a basis of P2.

Solution. Write f0(x) = x2− x = x(x−1), f1(x) = x2−2x = x(x−2), and
f2(x) = x2−3x+2 = (x−1)(x−2). Then the conditions of Theorem 6.5.2 are satisfied with
a0 = 2, a1 = 1, and a2 = 0.

We investigate one natural choice of the polynomials fi(x) in Theorem 6.5.2. To illustrate, let a0, a1,
and a2 be distinct numbers and write

f0(x) =
(x−a1)(x−a2)
(a0−a1)(a0−a2)

f1(x) =
(x−a0)(x−a2)
(a1−a0)(a1−a2)

f2(x) =
(x−a0)(x−a1)
(a2−a0)(a2−a1)

Then f0(a0) = f1(a1) = f2(a2) = 1, and fi(a j) = 0 for i 6= j. Hence Theorem 6.5.2 applies, and because
fi(ai) = 1 for each i, the formula for expanding any polynomial is simplified.

In fact, this can be generalized with no extra effort. If a0, a1, . . . , an are distinct numbers, define the
Lagrange polynomials δ0(x), δ1(x), . . . , δn(x) relative to these numbers as follows:

δk(x) =
∏i6=k(x−ai)

∏i6=k(ak−ai)
k = 0, 1, 2, . . . , n

Here the numerator is the product of all the terms (x−a0), (x−a1), . . . , (x−an) with (x−ak) omitted,
and a similar remark applies to the denominator. If n = 2, these are just the polynomials in the preceding
paragraph. For another example, if n = 3, the polynomial δ1(x) takes the form

δ1(x) =
(x−a0)(x−a2)(x−a3)

(a1−a0)(a1−a2)(a1−a3)

In the general case, it is clear that δi(ai) = 1 for each i and that δi(a j) = 0 if i 6= j. Hence Theorem 6.5.2
specializes as Theorem 6.5.3.
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Theorem 6.5.3: Lagrange Interpolation Expansion

Let a0, a1, . . . , an be distinct numbers. The corresponding set

{δ0(x), δ1(x), . . . , δn(x)}

of Lagrange polynomials is a basis of Pn, and any polynomial f (x) in Pn has the following unique
expansion as a linear combination of these polynomials.

f (x) = f (a0)δ0(x)+ f (a1)δ1(x)+ · · ·+ f (an)δn(x)

Example 6.5.3

Find the Lagrange interpolation expansion for f (x) = x2−2x+1 relative to a0 =−1, a1 = 0, and
a2 = 1.

Solution. The Lagrange polynomials are

δ0 =
(x−0)(x−1)

(−1−0)(−1−1) =
1
2(x

2− x)

δ1 =
(x+1)(x−1)
(0+1)(0−1) =−(x

2−1)

δ2 =
(x+1)(x−0)
(1+1)(1−0) =

1
2(x

2 + x)

Because f (−1) = 4, f (0) = 1, and f (1) = 0, the expansion is

f (x) = 2(x2− x)− (x2−1)

The Lagrange interpolation expansion gives an easy proof of the following important fact.

Theorem 6.5.4

Let f (x) be a polynomial in Pn, and let a0, a1, . . . , an denote distinct numbers. If f (ai) = 0 for all
i, then f (x) is the zero polynomial (that is, all coefficients are zero).

Proof. All the coefficients in the Lagrange expansion of f (x) are zero.
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Exercises for 6.5

Exercise 6.5.1 If polynomials f (x) and g(x) satisfy
f (a) = g(a), show that f (x)− g(x) = (x− a)h(x) for
some polynomial h(x).

Exercises 6.5.2, 6.5.3, 6.5.4, and 6.5.5 require poly-
nomial differentiation.

Exercise 6.5.2 Expand each of the following as a poly-
nomial in powers of x−1.

a. f (x) = x3−2x2 + x−1

b. f (x) = x3 + x+1

c. f (x) = x4

d. f (x) = x3−3x2 +3x

Exercise 6.5.3 Prove Taylor’s theorem for polynomi-
als.

Exercise 6.5.4 Use Taylor’s theorem to derive the bino-

mial theorem:

(1+ x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

Here the binomial coefficients
(

n
r

)
are defined by

(
n

r

)
= n!

r!(n−r)!

where n! = n(n−1) · · ·2 ·1 if n≥ 1 and 0! = 1.

Exercise 6.5.5 Let f (x) be a polynomial of degree n.
Show that, given any polynomial g(x) in Pn, there exist
numbers b0, b1, . . . , bn such that

g(x) = b0 f (x)+b1 f (1)(x)+ · · ·+bn f (n)(x)

where f (k)(x) denotes the kth derivative of f (x).

Exercise 6.5.6 Use Theorem 6.5.2 to show that the fol-
lowing are bases of P2.

a. {x2−2x, x2 +2x, x2−4}

b. {x2−3x+2, x2−4x+3, x2−5x+6}

Exercise 6.5.7 Find the Lagrange interpolation expan-
sion of f (x) relative to a0 = 1, a1 = 2, and a2 = 3 if:

f (x) = x2 +1a. f (x) = x2 + x+1b.

Exercise 6.5.8 Let a0, a1, . . . , an be distinct numbers.
If f (x) and g(x) in Pn satisfy f (ai) = g(ai) for all i, show
that f (x) = g(x). [Hint: See Theorem 6.5.4.]

Exercise 6.5.9 Let a0, a1, . . . , an be distinct numbers.
If f (x)∈Pn+1 satisfies f (ai) = 0 for each i= 0, 1, . . . , n,
show that f (x) = r(x−a0)(x−a1) · · · (x−an) for some r

in R. [Hint: r is the coefficient of xn+1 in f (x). Consider
f (x)− r(x−a0) · · · (x−an) and use Theorem 6.5.4.]

Exercise 6.5.10 Let a and b denote distinct numbers.

a. Show that {(x−a), (x−b)} is a basis of P1.

b. Show that {(x−a)2, (x−a)(x−b), (x−b)2} is a
basis of P2.

c. Show that {(x−a)n, (x−a)n−1(x−b),
. . . , (x− a)(x− b)n−1, (x− b)n} is a basis of Pn.
[Hint: If a linear combination vanishes, evaluate
at x = a and x = b. Then reduce to the case n− 2
by using the fact that if p(x)q(x) = 0 in P, then
either p(x) = 0 or q(x) = 0.]

Exercise 6.5.11 Let a and b be two distinct numbers.
Assume that n≥ 2 and let

Un = { f (x) in Pn | f (a) = 0 = f (b)}.

a. Show that

Un = {(x−a)(x−b)p(x) | p(x) in Pn−2}

b. Show that dim Un = n−1.

[Hint: If p(x)q(x) = 0 in P, then either p(x) = 0,
or q(x) = 0.]

c. Show {(x−a)n−1(x−b), (x−a)n−2(x−b)2,
. . . , (x−a)2(x−b)n−2, (x−a)(x−b)n−1} is a ba-
sis of Un. [Hint: Exercise 6.5.10.]
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6.6 An Application to Differential Equations

Call a function f : R→ R differentiable if it can be differentiated as many times as we want. If f

is a differentiable function, the nth derivative f (n) of f is the result of differentiating n times. Thus
f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . and, in general, f (n+1) = f (n)′ for each n≥ 0. For small values of n

these are often written as f , f ′, f ′′, f ′′′, . . . .

If a, b, and c are numbers, the differential equations

f ′′+a f ′+b f = 0 or f ′′′+a f ′′+b f ′+ c f = 0

are said to be of second-order and third-order, respectively. In general, an equation

f (n)+an−1 f (n−1)+an−2 f (n−2)+ · · ·+a2 f (2)+a1 f (1)+a0 f (0) = 0, ai in R (6.3)

is called a differential equation of order n. In this section we investigate the set of solutions to (6.3) and,
if n is 1 or 2, find explicit solutions. Of course an acquaintance with calculus is required.

Let f and g be solutions to (6.3). Then f +g is also a solution because ( f +g)(k) = f (k)+g(k) for all
k, and a f is a solution for any a in R because (a f )(k) = a f (k). It follows that the set of solutions to (6.3) is
a vector space, and we ask for the dimension of this space.

We have already dealt with the simplest case (see Theorem 3.5.1):

Theorem 6.6.1

The set of solutions of the first-order differential equation f ′+a f = 0 is a one-dimensional vector
space and {e−ax} is a basis.

There is a far-reaching generalization of Theorem 6.6.1 that will be proved in Theorem 7.4.1.

Theorem 6.6.2

The set of solutions to the nth order equation (6.3) has dimension n.

Remark

Every differential equation of order n can be converted into a system of n linear first-order equations (see
Exercises 3.5.6 and 3.5.7). In the case that the matrix of this system is diagonalizable, this approach
provides a proof of Theorem 6.6.2. But if the matrix is not diagonalizable, Theorem 7.4.1 is required.

Theorem 6.6.1 suggests that we look for solutions to (6.3) of the form eλx for some number λ . This is
a good idea. If we write f (x) = eλx, it is easy to verify that f (k)(x) = λ keλx for each k≥ 0, so substituting
f in (6.3) gives

(λ n +an−1λ n−1 +an−2λ n−2 + · · ·+a2λ 2 +a1λ 1 +a0)e
λx = 0

Since eλx 6= 0 for all x, this shows that eλx is a solution of (6.3) if and only if λ is a root of the characteristic

polynomial c(x), defined to be

c(x) = xn +an−1xn−1 +an−2xn−2 + · · ·+a2x2 +a1x+a0


